metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{*u*-1-[(2-ethyl-1*H*-imidazol-1-yl)methyl]-1H-benzotriazole}bis(iodidocadmium)

Xia Wang^a* and Jun-long Niu^b

^aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and ^bDepartment of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China

Correspondence e-mail: wangxiawx83@yahoo.com.cn

Received 30 May 2011; accepted 1 June 2011

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.006 Å; R factor = 0.027; wR factor = 0.061; data-to-parameter ratio = 19.0.

The dinuclear title complex, $[Cd_2I_4(C_{12}H_{13}N_5)_2]$, lies on a crystallographic center of inversion. The Cd^{II} atom is fourcoordinated by two N atoms from two 1-[(2-ethyl-1Himidazol-1-yl)methyl]-1H-benzotriazole (bmei) ligands and two terminal I atoms in a distorted tetrahedral coordination environment. The Cd^{II} atoms are connected to each other by two bridging bmei ligands. The benzotriazole rings in adjacent molecules are almost parallel, with an average interplanar distance of 3.3400 (2) Å and a centroid-centroid distance of 4.852 (2) Å.

Related literature

For related structures, see: Meng et al. (2009); Huang et al. (2006); Zhai et al. (2006); Wang et al. (2010).

Experimental

Crystal data

$[Cd_{2}I_{4}(C_{12}H_{13}N_{5})_{2}]$	$\gamma = 77.538~(5)^{\circ}$
$M_r = 1186.95$	V = 848.08 (9) Å ³
Triclinic, $P\overline{1}$	Z = 1
a = 7.8323 (4) Å	Mo $K\alpha$ radiation
b = 10.0657 (6) Å	$\mu = 4.93 \text{ mm}^{-1}$
c = 11.2335 (7) Å	$T = 290 { m K}$
$\alpha = 78.849 \ (5)^{\circ}$	$0.25 \times 0.21 \times 0.1$
$\beta = 86.020 \ (5)^{\circ}$	

Data collection

Agilent Xcalibur Eos Gemini diffractometer Absorption correction: Gaussian Inumerical absorption correction based on Gaussian integration

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.061$ S = 1.083462 reflections

adiation mm^{-1} $21 \times 0.15 \text{ mm}$

(CrysAlis PRO; Agilent, 2010)] $T_{\min} = 0.287, T_{\max} = 0.487$ 13998 measured reflections 3462 independent reflections 2961 reflections with $I > 2\sigma(I)$ over a multifaceted crystal model $R_{\rm int} = 0.031$

> 182 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min}$ = -1.05 e Å⁻³

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

The authors thank Professor Hong-Wei Hou and Yu Zhu of Zhengzhou University for their help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2107).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Huang, M.-H., Liu, P., Wang, J., Chen, Y. & Liu, Q.-Y. (2006). Inorg. Chem. Commun. 9, 952-954.
- Meng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519-1527.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X., Li, Y.-X., Liu, Y.-J., Yang, H.-X. & Zhang, C.-C. (2010). Acta Cryst. E66 m1207
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126-2135.

supplementary materials

Acta Cryst. (2011). E67, m882 [doi:10.1107/81600536811021179]

Bis{#-1-[(2-ethyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole}bis(iodidocadmium)

X. Wang and J. Niu

Comment

Imidazole and benzotriazole derivatives have been widely used in the construction of complexes since they can act as polydentate ligands and function as bridging ligands (Meng *et al.*, 2009; Huang *et al.*, 2006). The Cd^{II} atom is a good model atom to construct complexes owing to its property to form bonds with different donors simultaneously, and to its various modes (Zhai *et al.*, 2006; Wang *et al.*, 2010). In this work, through the reaction of 1-[(2-ethyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole (bmei) with cadmium iodide at room temperature, we obtained the title complex [Cd₂(C₁₂H₁₃N₅)₂I₂], which is reported here.

The dinuclear title complex, $[Cd_2(C_{12}H_{13}N_5)_2I_2]$, lies on a crystallographic center of inversion. The Cd^{II} atom is fourcoordinated by two N atoms from two 1-[(2-ethyl-1*H*-imidazol-1-yl)methyl]-1*H*-benzotriazole (bmei) ligands and two terminal I atoms in a distorted tetrahedral coordination environment. The Cd^{II} atoms are connected by two bridging bmei ligands (Fig. 1). The distance between two Cd atoms bridged by two bmei ligands is 8.4983 (7) Å. In addition, the benzotriazole rings in adjacent molecules are almost parallel with an average interplanar distance of 3.3400 (2) Å and a centroid-centroid distance of 4.852 (2) Å.

Experimental

The ligand 1-[(2-ethyl-1*H*-imidazol-1-yl)methyl]-1*H*-benzotriazole (0.04 mmol, 0.0096 g) in methanol (6 ml) was added dropwise to a methanol solution (6 ml) of CdI2 (0.04 mmol, 0.0146 g) in methanol. The resulting solution was allowed to stand at room temperature. After two weeks good quality colourless crystals were obtained from the dried in air.

Refinement

H atoms were generated geometrically and refined as riding atoms with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. View of the title complex, showing the labeling of the 30% probability ellipsolids (all H atoms have been omitted for clarity). Symmetry code: (A) -x + 1, -y + 2, -z.

Fig. 2. A view of the crystal packing along the *a* axis. All H atoms are omitted for clarity.

Bis{µ-1-[(2-ethyl-1*H*-imidazol-1-yl)methyl]-1*H*- benzotriazole}bis(iodidocadmium)

Crystal data	
$[Cd_2I_4(C_{12}H_{13}N_5)_2]$	Z = 1
$M_r = 1186.95$	F(000) = 548
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.324 {\rm ~Mg~m}^{-3}$
a = 7.8323 (4) Å	Mo K α radiation, $\lambda = 0.7107$ Å
b = 10.0657 (6) Å	Cell parameters from 6849 reflections
c = 11.2335 (7) Å	$\theta = 3.0 - 26.3^{\circ}$
$\alpha = 78.849 \ (5)^{\circ}$	$\mu = 4.93 \text{ mm}^{-1}$
$\beta = 86.020 \ (5)^{\circ}$	T = 290 K
$\gamma = 77.538 \ (5)^{\circ}$	Prismatic, colourless
$V = 848.08 (9) \text{ Å}^3$	$0.25\times0.21\times0.15~mm$

Data collection

Agilent Xcalibur Eos Gemini diffractometer	3462 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2961 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
Detector resolution: 16.2312 pixels mm ⁻¹	$\theta_{\text{max}} = 26.3^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: gaussian [numerical absorption correction based on Gaus- sian integration over a multifaceted crystal model (<i>CrysAlis PRO</i> ; Agilent, 2010)]	$k = -12 \rightarrow 12$
$T_{\min} = 0.287, \ T_{\max} = 0.487$	$l = -14 \rightarrow 14$
13998 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.061$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.026P)^{2} + 0.3471P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

3462 reflections	$(\Delta/\sigma)_{max} = 0.002$
182 parameters	$\Delta\rho_{max} = 0.82 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.05 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

I10.49488 (4)1.31204 (3)0.40337 (2)0.04897 (9)I2-0.04748 (4)1.42680 (3)0.22432 (3)0.06153 (11)Cd10.27758 (4)1.26989 (3)0.24333 (2)0.03657 (9)N10.2561 (4)1.0409 (3)0.2834 (3)0.0385 (7)N20.4017 (4)0.9559 (3)0.2627 (3)0.0389 (7)N30.3713 (4)0.8276 (3)0.2862 (3)0.0350 (7)N40.5058 (4)0.7062 (3)0.1294 (3)0.0354 (7)N50.5744 (4)0.7249 (3)-0.0641 (3)0.0370 (7)C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3657 (4)0.0442 (9)H7A0.48510.62740.30590.51*H7B0.61920.72580.27720.051*C80.3756 (5)0.6798 (4)-0.0435 (4)0.0432 (9)H7B0.61920.6598-0.10230.63*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0434 (9) <th></th> <th>x</th> <th>У</th> <th>Z</th> <th>$U_{\rm iso}$*/$U_{\rm eq}$</th>		x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
I2 -0.04748 (4) 1.42680 (3) 0.22432 (3) 0.06153 (11) Cd1 0.27758 (4) 1.26989 (3) 0.24333 (2) 0.03657 (9) N1 0.2561 (4) 1.0409 (3) 0.2834 (3) 0.0385 (7) N2 0.4017 (4) 0.9559 (3) 0.2627 (3) 0.0389 (7) N3 0.3713 (4) 0.8276 (3) 0.2862 (3) 0.0350 (7) N4 0.5058 (4) 0.7062 (3) 0.1294 (3) 0.0354 (7) N5 0.5744 (4) 0.7249 (3) -0.0641 (3) 0.0370 (7) C1 0.2006 (5) 0.8280 (4) 0.3214 (3) 0.0343 (8) C2 0.1274 (5) 0.9679 (4) 0.3215 (3) 0.0356 (8) C3 -0.0491 (5) 1.0113 (4) 0.3544 (4) 0.0451 (10) H3 -0.1003 1.1043 0.3512 0.054* C4 -0.1422 (6) 0.9082 (5) 0.3916 (4) 0.0525 (11) H4 -0.2598 0.3224 0.4139 0.62* C5 -0.0643 (6) 0.7676 (5) <t< td=""><td>I1</td><td>0.49488 (4)</td><td>1.31204 (3)</td><td>0.40337 (2)</td><td>0.04897 (9)</td></t<>	I1	0.49488 (4)	1.31204 (3)	0.40337 (2)	0.04897 (9)
Cd10.27758 (4)1.26989 (3)0.24333 (2)0.03657 (9)N10.2561 (4)1.0409 (3)0.2834 (3)0.0385 (7)N20.4017 (4)0.9559 (3)0.2627 (3)0.0389 (7)N30.3713 (4)0.8276 (3)0.2862 (3)0.0350 (7)N40.5058 (4)0.7062 (3)0.1294 (3)0.0354 (7)N50.5744 (4)0.7249 (3)-0.0641 (3)0.0370 (7)C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0451 (9)H7D0.61920.72580.27720.51*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7B0.61920.6298-0.10230.053*C80.3756 (5)0.6798 (4)-0.0435 (4)0.0432 (9)H80.27620.61140.11320.053*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0432 (9)H90.35700.6598-0.10230.053*C10 <t< td=""><td>I2</td><td>-0.04748 (4)</td><td>1.42680 (3)</td><td>0.22432 (3)</td><td>0.06153 (11)</td></t<>	I2	-0.04748 (4)	1.42680 (3)	0.22432 (3)	0.06153 (11)
N10.2561 (4)1.0409 (3)0.2834 (3)0.0385 (7)N20.4017 (4)0.9559 (3)0.2627 (3)0.0389 (7)N30.3713 (4)0.8276 (3)0.2862 (3)0.0350 (7)N40.5058 (4)0.7062 (3)0.1294 (3)0.0354 (7)N50.5744 (4)0.7249 (3)-0.0641 (3)0.0370 (7)C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3655 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0432 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7	Cd1	0.27758 (4)	1.26989 (3)	0.24333 (2)	0.03657 (9)
N20.4017 (4)0.9559 (3)0.2627 (3)0.0389 (7)N30.3713 (4)0.8276 (3)0.2862 (3)0.0350 (7)N40.5058 (4)0.7062 (3)0.1294 (3)0.0354 (7)N50.5744 (4)0.7249 (3)-0.0641 (3)0.0370 (7)C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.05*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.053*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0330 (8)C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0422 (9)H11B0.82970.74940.13880.053*	N1	0.2561 (4)	1.0409 (3)	0.2834 (3)	0.0385 (7)
N30.3713 (4)0.8276 (3)0.2862 (3)0.0350 (7)N40.5058 (4)0.7062 (3)0.1294 (3)0.0354 (7)N50.5744 (4)0.7249 (3)-0.0641 (3)0.0370 (7)C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.51*H7B0.61920.72580.27720.51*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0422 (9)H11B0.82970.7	N2	0.4017 (4)	0.9559 (3)	0.2627 (3)	0.0389 (7)
N40.5058 (4)0.7062 (3)0.1294 (3)0.0354 (7)N50.5744 (4)0.7249 (3)-0.0641 (3)0.0370 (7)C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0451 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0330 (8)C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.82970.74940.13880.053*	N3	0.3713 (4)	0.8276 (3)	0.2862 (3)	0.0350 (7)
N50.5744 (4)0.7249 (3)-0.0641 (3)0.0370 (7)C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3655 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0330 (8)C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.82970.74940.13880.053*	N4	0.5058 (4)	0.7062 (3)	0.1294 (3)	0.0354 (7)
C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6648 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7111 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.82970.74940.13880.053*	N5	0.5744 (4)	0.7249 (3)	-0.0641 (3)	0.0370 (7)
C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0330 (8)C100.6246 (5)0.7111 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	C1	0.2006 (5)	0.8280 (4)	0.3244 (3)	0.0343 (8)
C3-0.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.82970.74940.13880.053*	C2	0.1274 (5)	0.9679 (4)	0.3215 (3)	0.0356 (8)
H3-0.10031.10430.35120.054*C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.82970.74940.13880.053*	C3	-0.0491 (5)	1.0113 (4)	0.3544 (4)	0.0451 (10)
C4-0.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*K7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.82970.74940.13880.053*	Н3	-0.1003	1.1043	0.3512	0.054*
H4-0.25980.93220.41390.062*C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.82970.74940.13880.053*	C4	-0.1422 (6)	0.9082 (5)	0.3916 (4)	0.0514 (11)
C5-0.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	H4	-0.2598	0.9322	0.4139	0.062*
H5-0.13220.70180.42360.063*C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	C5	-0.0643 (6)	0.7676 (5)	0.3966 (4)	0.0525 (11)
C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	Н5	-0.1322	0.7018	0.4236	0.063*
H60.15830.63030.36700.056*C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	C6	0.1076 (6)	0.7234 (4)	0.3635 (4)	0.0469 (10)
C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	Н6	0.1583	0.6303	0.3670	0.056*
H7A0.48510.62740.30590.051*H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	C7	0.5056 (5)	0.7136 (4)	0.2573 (3)	0.0421 (9)
H7B0.61920.72580.27720.051*C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	H7A	0.4851	0.6274	0.3059	0.051*
C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	H7B	0.6192	0.7258	0.2772	0.051*
H80.27620.64140.11320.052*C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	C8	0.3756 (5)	0.6688 (4)	0.0752 (4)	0.0432 (9)
C90.4206 (5)0.6798 (4)-0.0435 (4)0.0440 (9)H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	H8	0.2762	0.6414	0.1132	0.052*
H90.35700.6598-0.10230.053*C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	C9	0.4206 (5)	0.6798 (4)	-0.0435 (4)	0.0440 (9)
C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	Н9	0.3570	0.6598	-0.1023	0.053*
C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	C10	0.6246 (5)	0.7411 (3)	0.0414 (3)	0.0330 (8)
H11B0.87410.7642-0.00070.053*H11A0.82970.74940.13880.053*	C11	0.7851 (5)	0.7927 (4)	0.0590 (4)	0.0442 (9)
H11A 0.8297 0.7494 0.1388 0.053*	H11B	0.8741	0.7642	-0.0007	0.053*
	H11A	0.8297	0.7494	0.1388	0.053*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C12	0.7549 (6)	0.9494 (4)	0.0479 (4)	0.0564 (11)
H12B	0.7143	0.9933	-0.0316	0.085*
H12C	0.8626	0.9748	0.0607	0.085*
H12A	0.6687	0.9786	0.1078	0.085*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.04834 (17)	0.06438 (19)	0.03873 (15)	-0.02051 (14)	-0.00434 (12)	-0.00950 (13)
I2	0.04034 (16)	0.04634 (17)	0.0956 (3)	-0.00025 (13)	-0.00964 (16)	-0.01437 (16)
Cd1	0.03734 (16)	0.03522 (15)	0.03821 (16)	-0.00826 (12)	0.00067 (12)	-0.00907 (12)
N1	0.0398 (18)	0.0340 (17)	0.0428 (18)	-0.0096 (14)	0.0045 (15)	-0.0097 (14)
N2	0.0433 (18)	0.0328 (17)	0.0398 (17)	-0.0086 (14)	0.0052 (15)	-0.0065 (14)
N3	0.0410 (17)	0.0326 (16)	0.0298 (15)	-0.0068 (14)	0.0026 (13)	-0.0037 (12)
N4	0.0390 (17)	0.0341 (16)	0.0343 (16)	-0.0070 (14)	0.0003 (14)	-0.0103 (13)
N5	0.0422 (18)	0.0361 (17)	0.0344 (17)	-0.0120 (14)	0.0013 (14)	-0.0074 (13)
C1	0.039 (2)	0.038 (2)	0.0278 (18)	-0.0134 (17)	-0.0008 (16)	-0.0064 (15)
C2	0.039 (2)	0.040 (2)	0.0297 (18)	-0.0114 (17)	0.0007 (16)	-0.0074 (16)
C3	0.040 (2)	0.050(2)	0.047 (2)	-0.0078 (19)	0.0020 (19)	-0.0138 (19)
C4	0.038 (2)	0.071 (3)	0.049 (2)	-0.019 (2)	0.0026 (19)	-0.015 (2)
C5	0.053 (3)	0.061 (3)	0.053 (3)	-0.036 (2)	0.004 (2)	-0.007 (2)
C6	0.058 (3)	0.042 (2)	0.045 (2)	-0.020 (2)	0.003 (2)	-0.0083 (18)
C7	0.046 (2)	0.038 (2)	0.038 (2)	0.0005 (18)	-0.0032 (18)	-0.0041 (17)
C8	0.042 (2)	0.042 (2)	0.050(2)	-0.0147 (18)	0.0083 (19)	-0.0142 (19)
C9	0.044 (2)	0.047 (2)	0.049 (2)	-0.0176 (19)	0.0011 (19)	-0.0195 (19)
C10	0.0353 (19)	0.0265 (17)	0.037 (2)	-0.0068 (15)	0.0012 (16)	-0.0058 (15)
C11	0.039 (2)	0.051 (2)	0.046 (2)	-0.0116 (19)	-0.0028 (18)	-0.0127 (19)
C12	0.055 (3)	0.059 (3)	0.062 (3)	-0.028(2)	-0.001(2)	-0.011 (2)

Geometric parameters (Å, °)

2.7094 (4)	C3—C4	1.379 (6)
2.6892 (4)	C4—H4	0.9300
2.302 (3)	C4—C5	1.406 (6)
2.250 (3)	С5—Н5	0.9300
1.306 (4)	C5—C6	1.373 (6)
1.371 (5)	С6—Н6	0.9300
1.337 (4)	С7—Н7А	0.9700
1.375 (5)	С7—Н7В	0.9700
1.451 (5)	С8—Н8	0.9300
1.452 (5)	C8—C9	1.345 (5)
1.376 (5)	С9—Н9	0.9300
1.359 (5)	C10—C11	1.499 (5)
2.250 (3)	C11—H11B	0.9700
1.367 (5)	C11—H11A	0.9700
1.323 (4)	C11—C12	1.525 (6)
1.396 (5)	C12—H12B	0.9600
1.393 (5)	C12—H12C	0.9600
	2.7094 (4) 2.6892 (4) 2.302 (3) 2.250 (3) 1.306 (4) 1.371 (5) 1.337 (4) 1.375 (5) 1.451 (5) 1.452 (5) 1.376 (5) 1.359 (5) 2.250 (3) 1.367 (5) 1.323 (4) 1.396 (5) 1.393 (5)	2.7094 (4) $C3-C4$ $2.6892 (4)$ $C4-H4$ $2.302 (3)$ $C4-C5$ $2.250 (3)$ $C5-H5$ $1.306 (4)$ $C5-C6$ $1.371 (5)$ $C6-H6$ $1.377 (4)$ $C7-H7A$ $1.375 (5)$ $C7-H7B$ $1.451 (5)$ $C8-H8$ $1.452 (5)$ $C8-C9$ $1.376 (5)$ $C10-C11$ $2.250 (3)$ $C11-H11B$ $1.367 (5)$ $C11-H11A$ $1.323 (4)$ $C11-C12$ $1.396 (5)$ $C12-H12B$ $1.393 (5)$ $C12-H12C$

C2—C3	1.403 (5)	C12—H12A	0.9600
С3—Н3	0.9300		
I2—Cd1—I1	118.809 (14)	C4—C3—C2	116.1 (4)
N1—Cd1—I1	109.18 (8)	С4—С3—Н3	121.9
N1—Cd1—I2	108.30 (8)	С4—С5—Н5	118.6
N1—N2—N3	107.9 (3)	С5—С4—Н4	119.1
N1—C2—C1	107.6 (3)	C5—C6—C1	115.2 (4)
N1—C2—C3	131.4 (4)	С5—С6—Н6	122.4
N2—N1—Cd1	113.7 (2)	C6—C1—C2	123.0 (4)
N2—N1—C2	109.7 (3)	C6—C5—C4	122.8 (4)
N2—N3—C1	111.1 (3)	С6—С5—Н5	118.6
N2—N3—C7	119.6 (3)	Н7А—С7—Н7В	108.0
N3—C1—C2	103.7 (3)	C8—N4—C7	124.5 (3)
N3—C1—C6	133.2 (4)	C8—C9—N5	109.3 (4)
N3—C7—N4	110.9 (3)	С8—С9—Н9	125.4
N3—C7—H7A	109.5	C9—N5—Cd1 ⁱ	122.4 (3)
N3—C7—H7B	109.5	C9—C8—N4	106.4 (4)
N4—C7—H7A	109.5	С9—С8—Н8	126.8
N4—C7—H7B	109.5	C10—N4—C7	127.6 (3)
N4—C8—H8	126.8	C10—N4—C8	107.8 (3)
N4—C10—C11	126.0 (3)	C10—N5—Cd1 ⁱ	129.4 (3)
N5 ⁱ —Cd1—I1	106.59 (8)	C10—N5—C9	107.5 (3)
N5 ⁱ —Cd1—I2	112.86 (8)	C10-C11-H11B	108.7
N5 ⁱ —Cd1—N1	99.31 (11)	C10-C11-H11A	108.7
N5—C9—H9	125.4	C10-C11-C12	114.1 (3)
N5-C10-N4	109.1 (3)	C11—C12—H12B	109.5
N5-C10-C11	124.9 (3)	C11—C12—H12C	109.5
C1—N3—C7	128.9 (3)	C11—C12—H12A	109.5
C1—C2—C3	121.0 (4)	H11B-C11-H11A	107.6
С1—С6—Н6	122.4	C12-C11-H11B	108.7
C2—N1—Cd1	136.6 (2)	C12-C11-H11A	108.7
С2—С3—Н3	121.9	H12B-C12-H12C	109.5
C3—C4—H4	119.1	H12B—C12—H12A	109.5
C3—C4—C5	121.9 (4)	H12C—C12—H12A	109.5
I1—Cd1—N1—N2	-66.6 (2)	N5 ⁱ —Cd1—N1—C2	-133.4 (4)
I1—Cd1—N1—C2	115.3 (3)	N5-C10-C11-C12	90.2 (5)
I2—Cd1—N1—N2	162.7 (2)	C1—N3—C7—N4	90.9 (4)
I2—Cd1—N1—C2	-15.4 (4)	C1—C2—C3—C4	1.4 (6)
Cd1—N1—N2—N3	-178.4 (2)	C2—N1—N2—N3	0.2 (4)
Cd1—N1—C2—C1	178.3 (3)	C2—C1—C6—C5	1.6 (6)
Cd1—N1—C2—C3	-1.7 (6)	C2—C3—C4—C5	0.2 (6)
Cd1 ⁱ —N5—C9—C8	171.0 (2)	C3—C4—C5—C6	-1.0 (7)
Cd1 ⁱ —N5—C10—N4	-169.5 (2)	C4—C5—C6—C1	0.1 (6)
Cd1 ⁱ —N5—C10—C11	11.7 (5)	C6-C1-C2-N1	177.6 (3)
N1—N2—N3—C1	-0.5 (4)	C6—C1—C2—C3	-2.4 (6)
N1—N2—N3—C7	172.9 (3)	C7—N3—C1—C2	-172.0 (3)
N1—C2—C3—C4	-178.6 (4)	C7—N3—C1—C6	10.3 (7)

supplementary materials

N2—N1—C2—C1	0.1 (4)	C7—N4—C8—C9	177.7 (3)
N2—N1—C2—C3	-179.9 (4)	C7—N4—C10—N5	-177.4 (3)
N2—N3—C1—C2	0.5 (4)	C7—N4—C10—C11	1.3 (6)
N2—N3—C1—C6	-177.1 (4)	C8—N4—C7—N3	-69.3 (5)
N2—N3—C7—N4	-81.1 (4)	C8—N4—C10—N5	-0.9 (4)
N3—C1—C2—N1	-0.4 (4)	C8—N4—C10—C11	177.9 (3)
N3—C1—C2—C3	179.6 (3)	C9—N5—C10—N4	0.4 (4)
N3—C1—C6—C5	178.9 (4)	C9—N5—C10—C11	-178.4 (3)
N4—C8—C9—N5	-0.8 (4)	C10-N4-C7-N3	106.8 (4)
N4-C10-C11-C12	-88.4 (5)	C10—N4—C8—C9	1.0 (4)
N5 ⁱ —Cd1—N1—N2	44.7 (3)	C10—N5—C9—C8	0.3 (4)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.			

Fig. 1

